
A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with

Environmental Uncertainty !

Betty H.C. Cheng1, Pete Sawyer2, Nelly Bencomo2, Jon Whittle2

chengb@cse.msu.edu; {sawyer,nelly,whittle}@comp.lancs.ac.uk
1 Department of Computer Science and Engineering, Michigan State University,

East Lansing, Michigan 48824, USA
2 Computing Department, InfoLab21, Lancaster University,

LA1 4WA, United Kingdom

Abstract. Dynamically adaptive systems (DASs) are intended to mon-
itor the execution environment and then dynamically adapt their behav-
ior in response to changing environmental conditions. The uncertainty
of the execution environment is a major motivation for dynamic adap-
tation; it is impossible to know at development time all of the possible
combinations of environmental conditions that will be encountered. To
date, the work performed in requirements engineering for a DAS includes
requirements monitoring and reasoning about the correctness of adap-
tations, where the DAS requirements are assumed to exist. This paper
introduces a goal-based modeling approach to develop the requirements
for a DAS, while explicitly factoring uncertainty into the process and
resulting requirements. We introduce a variation of threat modeling to
identify sources of uncertainty and demonstrate how the RELAX specifi-
cation language can be used to specify more flexible requirements within
a goal model to handle the uncertainty.

1 Introduction
Dynamically adaptive systems (DASs) are systems designed to continuously
monitor their environment and then adapt their behavior in response to chang-
ing environmental conditions. DASs tend to be cyberphysical systems, where the
physical environment is tightly intertwined with the computing-based system.
Example domains where DASs are necessary include power grid management sys-
tems, telecommunication systems, and ubiquitous systems. For these systems,
the software may need to be reconfigured at run time (e.g., software uploaded
or removed) in order to handle new environmental conditions.

Specifying the requirements for DASs is a challenging task because of the
inherent uncertainty associated with an unknown environment. This paper
! This work has been supported in part by NSF grants CNS-0551622, CCF-0541131,

IIP-0700329, CCF-0750787, Army Research Office grant W911NF-08-1-0495, Ford
Motor Company, and a Quality Fund Program grant from Michigan State University.

2

presents an approach in which goals [1] are used to systematically model the
requirements of a DAS. In particular, we use a variation of threat modeling (see,
e.g., [2]) to uncover places in the model where the requirements need to be up-
dated to support adaptation. In this case, threats correspond to changes in the
environment that may require the software to dynamically adapt at run time.
This process results in a goal-based requirements model that explicitly captures
where adaptations are needed, documents the level of flexibility supported during
adaptation, and takes into account enviromental uncertainty.

This paper builds directly on our previous work. In [3], it was noted that a
DAS is a collection of target systems, each of which handles a combination of
environmental conditions. As such, we can model the requirements of individual
target systems and the adaptive logic that transitions between the configura-
tions as separate concerns. The LOREM process [4] describes how to use this
idea to develop goal models to represent the individual target systems and the
adaptive logic. However, LOREM does not support requirements engineers in
identifying the requirements for these target systems. In [5], we described the
RELAX language, a textual language for dealing with uncertainty in DAS re-
quirements which allows requirements to be temporarily relaxed if necessary to
support adaptation. This flexibility is required, for example, if non-critical re-
quirements must be partially neglected in order to satisfy short-term critical
requirements. RELAX, however, was not integrated with modeling approaches
used in the requirements engineering community.

This paper, therefore, has three main contributions. Firstly, it gives a process
for identifying requirements for target DAS systems that can then be modeled
using a process such as LOREM. Secondly, it integrates our previous work on
RELAX with goal modeling. Finally, the paper presents a novel application of
threat modeling to systematically explore environmental uncertainty factors that
may impact the requirements of a DAS.

We illustrate our approach by applying it to Ambient Assisted Living (AAL),
an adaptive system providing assistance to elderly or handicapped persons in
their homes. The remainder of the paper is organized as follows. Section 2 in-
troduces AAL as our running example and presents our approach, including
the stepwise process for creating the goal and uncertainty models. Section 3
describes the details of applying the approach to the AAL system. Section 4
discusses related work. Finally, in Section 5, we present conclusions and discuss
future work.

2 Modeling Approach

A key characteristic of a DAS is that that there may be numerous approaches
to realizing its high-level objectives, where a specific set of run-time environ-
mental conditions will dictate which particular realization is appropriate at a
particular point in time. In order to support this type of variation, this paper
uses goal modeling to describe requirements of a DAS, since goal-based model-
ing offers a means to identify and visualize different alternatives for satisfying
the overall objectives of a system [1, 6]. The alternatives may be due to different

3

tradeoffs between non-functional goals (e.g., performance, reliability, etc.); and,
in the case of DASs, different goal paths may be due to uncertainty factors in the
environment. As such, goal-based modeling offers a means to explicitly capture
the rationale for how and why goals and requirements are decomposed. Further-
more, requirements identified through goal modeling can be used as the basis for
model-driven engineering (MDE) [1, 7, 3]. The additional information captured
by goal models (i.e., the rationale for a particular path of goal refinement) may
be used as constraints and/or guidance during the MDE process [3].

2.1 Running Application

To validate our approach, we conducted a case study provided by Fraunhofer
IESE in the form of an existing concept document describing a smart home for
assisted living. The concept document was written previously and independently
of this research. We present an excerpt of the document here to serve as a running
example for introducing our approach. 1

Mary is a widow. She is 65 years old, overweight and has high blood pres-
sure and cholesterol levels. Mary gets a new intelligent fridge. It comes with 4
temperature and 2 humidity sensors and is able to read, store, and communicate
RFID information on food packages. The fridge communicates with the ambient
assisted living (AAL) system in the house and integrates itself. In particular, it
detects the presence of spoiled food and discovers and receives a diet plan to be
monitored based on what food items Mary is consuming.

An important part of Mary’s diet is to ensure minimum liquid intake. The
intelligent fridge partially contributes to it. To improve the accuracy, special
sensor-enabled cups are used: some have sensors that beep when fluid intake is
necessary and have a level to monitor the fluid consumed; others additionally
have a gyro detecting spillage. They seamlessly coordinate in order to estimate
the amount of liquid taken: the latter informs the former about spillages so that
it can update the water level. However, Mary sometimes uses the cup to water
flowers. Sensors in the faucets and in the toilet also provide a means to monitor
this measurement.

Advanced smart homes, such as Mary’s AAL, rely on adaptivity to work
properly. For example, the sensor-enabled cups may fail, but since maintaining
a minimum of liquid intake is a life-critical feature, the AAL should be able to
respond by achieving this requirement in some other way.

2.2 Overview of Approach

Our approach follows the principles of the model-based approach described by
Zhang and Cheng [3] which considers a DAS to comprise numerous target sys-
tems, each of which supports behavior for a different set of environmental condi-
tions (posed by the environmental uncertainty). At run time, the DAS transitions
from one target system to another, depending on the environmental conditions.
1 See www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-lab/index.jsp.

4

While the earlier work emphasized design-phase models, this paper focuses on
the identification of the goals and requirements for each of the target systems.
Scope of Uncertainty. Before we start the goal derivation process, we identify
the top-level goal for the system; this goal should state the overall objective for
a system, while not being prescriptive for how to realize the objective. And we
also create a conceptual domain model (as a UML class diagram) that identifies
the key physical elements of the system and their relationships (e.g., sensors,
user interfaces). These elements contribute to the environmental conditions and
the uncertainty that must be handled by the system. In essence, the domain
model serves to scope the uncertainty for the system; that is, elements in the
domain model are either the sources of uncertainty or they are used to monitor
environment conditions that pose uncertainty. Figure 1 gives the conceptual
domain model, identifying the physical elements, their relationships to each other
and to the AAL. It also includes actors that may be human (e.g. Person) or
software-controlled (e.g. iCup, an intelligent cup with sensors).

Fig. 1. Conceptual domain model

Target System Modeling. From the top-level goal, we develop a goal lattice
using a process of goal refinement, where the first level of subgoals are termed

5

high-level goals, representing the key services to be provided by the system. This
refinement process is informed by the conceptual domain model and any problem
descriptions, use-cases or other sources of information elicited about the problem
to be tackled by the system under development (herein referred to as system). We
use KAOS, a goal-oriented requirements engineering language [1]; one influencing
factor for using KAOS is its support for threat modeling. In KAOS, goals describe
required properties of a system that are satisfied by different agents such as
software components or humans in the system’s environment. Goal refinement
in KAOS stops when responsibility for a goal’s satisfaction can be assigned to
a single agent. KAOS defines such a goal as a requirement if satisfied by a
software agent or an expectation if satisfied by a human agent. Requirements
and expectations form leaves of the goal lattice. It should be noted that the
KAOS definition of requirement is specific to KAOS but, for consistency sake,
we shall use the KAOS convention in the remainder of this paper.

Figure 2 gives a goal model for the AAL system, where the top-level goal is
to keep Mary healthy (i.e., Maintain[Health]). The right leaning parallelograms
represent goals, while the left leaning parallelograms represent KAOS obstacles
that act to confound goal satisfaction. Considering the goals first, requirements
and expectations are denoted as goals with embolded outlining. The hollow
circles represent goal refinement junctures, where multiple edges represent AND
goals (all subgoals must be satisfied in order to satisfy a parent goal). Goals
can also be OR-ed, denoted by multiple arrows directly attached to a parent
goal; an example appears in Figure 5. Goals can be elaborated to provide a
number of attributes including a definition. The dashed box attached to the
Maintain[Health] goal shows its definition formulated as a conventional SHALL
statement.2 Finally, agents are represented by hexagons. The network of goal-
related elements form a goal lattice.

Identifying Uncertainty. We assess the goal lattice in a bottom-up fashion,
looking for sources of uncertainty (i.e., elements in the domain model) that might
affect the satisfaction of the goals. Previously, threat modeling has been used to
identify threats that might exploit (security) vulnerabilities of system assets [8,
9]. In this current work, we introduce a variation of threat modeling to identify
uncertainty. More specifically, in the case of DASs, the “threats” are the various
environmental conditions (or the impact of environmental conditions) that pose
uncertainty at development time and thus may warrant dynamic adaptation at
run time to ensure acceptable behavior. The obstacles in Figure 2 represent un-
certainty factors impacting the goals which, like the goals, form a lattice, termed
uncertainty lattice, in which obstacles can be AND-ed and OR-ed to combine
their effects and propagate uncertainty upwards towards the top-level goal. The
lower uncertainty nodes represent the sources of uncertainty. The barred arrows
indicate the goals that they affect. The upper uncertainty nodes and the barred,
broken arrows that lead from them represent the impact of the uncertainty.
2 SHALL statements are commonly used to specify requirements, indicating a contrac-

tual relationship between the customer and the developer as to what functionality
should be included in the system.

6

Fig. 2. Initial refinement of the goals to keep Mary hydrated

Mitigating Uncertainty. The impact of the uncertainty is assessed to deter-
mine what type of mitigation, if any, is needed. Three possible tactics can be
used to mitigate the offending uncertainty factors, with each requiring different
levels of effort to realize. For a goal affected by uncertainty, the least costly miti-
gation tactic is to define new behavior in the form of a further subgoal to handle
the condition; this step equates to adding incremental functionality to a target
system. If the subgoal refinement is not sufficient to mitigate the uncertainty,
but partial satisfaction of the goal is tolerable, then we attempt to add flexibility
to the goal to account for the uncertainty. For this tactic, we use the RELAX
specification language [5] to add flexibility to the goal specification by speci-
fying requirements declaratively, rather than by enumeration. Briefly, RELAX
can be used to specify several dimensions of uncertainty, including duration and
frequency of system states; possible states of a system; and configurations for a
system. While the RELAX specifications are in the form of structured natural
language with Boolean expressions, the semantics for RELAX have been defined
in terms of temporal fuzzy logic [5]. Due to space constraints, we can only briefly
overview the RELAX language here; details may be found in [5].

To illustrate the use of RELAX to mitigate uncertainty, consider the following
goal that may not be satisfiable all the time.

“The System SHALL ensure that cold fresh water is constantly available.”

If we fail to take into account the uncertainty surrounding water supply and
design the system as if interruptions in water supply will never occur, then the
system may be too brittle and fail when an interruption does occur. However,

7

if the recipient of the system’s services can tolerate short disruptions in supply,
then we might RELAX the goal using a temporal RELAX operator as follows:

“The System SHALL ensure that cold fresh water is AS CLOSE AS POSSI-

BLE to constantly available.”

The RELAXed goals can be realized by implementations that have built-in flexi-
bility (e.g., through parameter definitions or alternate branches of functionality).
Note that goals for which partial satisfaction is not tolerable are considered to
be invariants. Invariants represent system requirements that must always be
satisfied even during adaptation.

If the adverse impact of the uncertainty cannot be mitigated by formulating
new subgoals or by RELAX-ation, then we have to consider the given goal as
failed. As such, we need to create a new high-level goal that captures the objective
of correcting the failure. This uncertainty-mitigation tactic is the most costly
since the new high-level goal and its subsequent refinement correspond to the
goal lattice for a new target system. Examples of each uncertainty-mitigation
tactic are described in Section 3.

Not shown in the text or the figures above are two key non-functional re-
quirements that guided the goal refinement process: the solutions offered by the
AAL should, as far as practicable, be non-invasive and of low cost. Since the
focus of this paper is on detecting and modeling uncertainty in the context of
DASs, we only consider the non-functional requirements implicitly in this dis-
cussion. In the LOREM work [4], we described how to use goal modeling of
non-functional requirements as the sole basis for dynamic adaptation, where the
different combinations of environmental conditions were explicitly enumerated.
In contrast, this paper describes a technique for identifying the environmental
conditions warranting dynamic adaptation.

2.3 Process Overview

The analysis steps described above can be applied systematically using the fol-
lowing stepwise process: Figure 3 gives the data flow diagram for the process.
Ovals represent processes, arrows represent data flows, and parallel lines repre-
sent data stores.

Step 0: Identify Top-level goal and Environment: Identify the top-level
goal for system. Create a conceptual domain model that identifies the en-
vironmental elements relevant to the system; these elements are potential
sources of uncertainty for the system).

Step 1: Derive the goal models: Perform goal refinement until we derive
leaf requirements/expectations and their respective agents.

Step 2: Identify Uncertainty Factors: Starting from the leaf require-
ments/expectations identify the uncertainty factors that might prevent their
satisfaction. These uncertainty factors represent environmental conditions
that potentially affect the behavior of the system. The uncertainty and/or
the impact of the uncertainty factors propagate up the goal lattice if not
adequately mitigated.

8

!"#$%&'()*#

+,-./&0&1#

2,31"##

4"5&670Y&#

:,31#;,%&1<"#

="#>7(:38&#

?'@&6837'8*#

A3@8,6<"#

!"#$%&'('&)#*+&)

,*+&)&+-.')

)/"0$))

1!233)40+0'5'604)

B"#$%&'()*#

?'@&6837'8*#

A3@8,6<"#

7'/)$"#$%&'('&)

#*+&48))9':6';)#*+&)

&+-.')/"0$)6'/)

4<=#*+&4)+6;>*9)

?@32A@B)

9'C<"9'5'604))

C,'@&-8D31#

%,;37'#;,%&1)

,*+&)&+-.')"60'90/"6';)

D"0$)E6.'90+"60F)&+-.'))

5EF#:,31<##

3'%#6&GD76&;&'8<)

Fig. 3. Process for Goal-Based Modeling of Adaptive Systems

Step 3: Mitigate Uncertainty Factors:
Below are the mitigation tactics, presented in order of increasing cost (i.e.
effort to realize).
i. No refinement: If the uncertainty factors do not prevent satisfaction

of the goals then do not modify the respective goal.
ii. Add low-level subgoals: If the uncertainty can be mitigated by in-

troducing new low-level goals, then refine with new subgoals.
iii. RELAX goals: If the uncertainty prevents high-level goals from being

completely satisfied but we can accept their partial satisfaction, then RE-
LAX the highest level goal impacted by the corresponding uncertainty.

iv. Add high-level goal: If the effect of uncertainty on a high-level goal is
unacceptably severe, then identify a new (high-level) goal to mitigate the
uncertainty. This new goal represents a new target system and the closer
to the top-level goal it is, the greater the implied cost of implementation.
Such a goal will have to be refined by executing Steps 1 - 3 for the new
portion of the goal lattice.

3 Application of Goal Modeling for the AAL System

This section describes the results of applying our modeling approach to the AAL
system. Due to space constraints, we can only present excerpted goal models of
each of the types of uncertainty mitigation.

Step 0: Identify Top-level goal and Environment. Recall that Figure 1
gives the conceptual domain model for the AAL, which serves to scope the envi-
ronment and uncertainty factors for the AAL. Step 0 of our analysis identified the
top-level goal of the AAL house as keeping Mary healthy (i.e., Maintain[Health]),
as shown in Figure 2. The ‘Maintain’ predicate of the label denotes the goal as
a behavioural goal specifying a property that should always hold. The inverse
of a ‘Maintain’ goal is an ‘Avoid’ goal. Hence the top-level goal could be denoted
by the goal Avoid[BadHealth]. A third class of behavioural goals is denoted by an
‘Achieve’ predicate, indicating a property that should eventually hold.

9

Step 1: Derive the goal models. Figure 2 shows Step 1 of our process to
refine the top-level goal as a lattice of subgoals. We elide all but one branch of
the lattice to illustrate the refinement of the goals concerned with ensuring that
her liquid intake is sufficient. The branch has been refined to a single expectation
that Mary drinks and a single requirement that the iFridge supplies cold drinking
water. These are AND-ed to indicate that both need to be satisfied in order to
satisfy the goal of maintaining adequate liquid intake.
Step2: Identify Uncertainty Factors. Following identification of the goals,
Step 2 analyses the extent to which they are satisfiable by developing the un-
certainty model using KAOS obstacles. The key uncertainty factor in Figure 2
is represented by the obstacle Forgets to drink. It is uncertain whether Mary will
drink enough liquid; she could forget to drink and the effect of this would mean
that she gets too little liquid, becomes dehydrated, and ultimately, unhealthy.
Step 3(ii): Mitigate Uncertainty Factors. Completion of the uncertainty
model triggers Step 3 whose purpose is to evaluate the uncertainty factors
and decide whether to try to mitigate them. Assuming that the uncertainty
is sufficiently serious that some mitigation is needed, we start by attempting
to apply 3(ii), adding a new subgoal to mitigate the obstacle. Uncertainty
about whether Mary will drink enough, which is represented by the For-
gets to drink obstacle in Figure 4, has been mitigated by adding a new goal
Achieve[ReminderToDrinkIssued], highlighted by the block arrow 3(ii). This new
goal is AND-ed with the expectation that Mary drinks and the requirement that
the iFridge supplies cold drinking water. In other words, we can reduce the like-
lihood of Mary forgetting to drink by giving her a reminder by exploiting the
iCups’ capability to beep; this new goal mitigates the obstacle Forgets to drink,
denoted by a solid bold arrow from goal to obstacle. An implication of the new
goal, however, is that we need to estimate how much Mary drinks over time and
issue reminders if her liquid intake falls below some ideal level. Hence, identifi-
cation of the Achieve[ReminderToDrinkIssued] goal triggers a repeat of Step 1 to
refine it down to the level of requirements, followed by Step 2 to build an uncer-
tainty model for these new requirements. This mitigation tactic is illustrated in
Figure 4; the goal lattice is extended with the goal Achieve[RemindertoDrinkIssued]
and its refinements, and the corresponding uncertainty lattice is extended with
the nodes Doesn’t act on prompt and Calculated liquid intake shortfall inaccurate,
along with their respective refinements. The extended goal lattice also includes
a domain assumption, denoted by the trapezoid labelled Most drinking vessels are
iCups, which we use here to record an assumption upon which the correctness of
our analysis depends; that Mary will drink most of her water from iCups.
Step 3(iii): Mitigate Uncertainty by RELAXation. Performance of
Step 3 on the new goals and uncertainty factors is interesting because it reveals
that the uncertainty can be mitigated but not be entirely eliminated. In this
case, the mitigation tactic is to add flexibility that accounts for the uncertainty
directly into the goal specification, assuming that the goal is not an invariant.
Hence, for example, the amount of liquid being taken from an iCup can be
sensed, but it cannot be guaranteed that the liquid taken is being consumed
by Mary. Mary might be using it to water her potted plants or simply spilling

10

!"

The System SHALL ensure AS CLOSE AS

POSSIBLE TO a minimum of liquid intake.

The system SHALL ensure minimum
liquid intake EVENTUALLY

Maintain[LiquidIntake AS

CLOSE AS POSSIBLE TO

ideal]

Achieve[Reminder

ToDrinkIssued]

Achieve[Prompted

ToDrink] Achieve[Liquid

ShortfallCalculated]

 AAL"
Most drinking

vessels are iCups
Maintain[Amount

DrunkMonitored]

Achieve[Liquid

IntakeCalculated]

 AAL"

 iCup"

Achieve[Liquid

Drunk]

Maintain[Supply

OfFreshWater]
 Mary"

iFridge"

Forgets to drink

Inadequate

liquid intake

Become

dehydrated

Become

unhealthy

Maintain[Amount

DrunkFromCup]

Maintain[Amount

TakenFromFridge]

iFridge"

Liquid spilled or

poured away

Other drinking

vessels present

Liquid taken for

other purposes

Maintain[Amount

TakenFromFaucets]

Faucet

Sensors"

Calculated liquid

intake shortfall

inaccurate

Maintain[Health

]

Maintain[Is

Hydrated]

Avoid[Food

Poisoning]

Maintain[Eat

HealthyDiet]

Low

cost

Non-

invasiv

e

Maintain[Well

Nourished]

Maintain[Healthy

BloodSugar]

Avoid[Infection]

3(ii)

3(iii)

Doesn’t act on

prompt

Fig. 4. Two types of uncertainty mitigation: by adding a new subgoal and RE-
LAXing subgoal, denoted by block arrows 3(ii) and 3(iii), respectively

it. As a consequence, the Maintain[AdequateLiquidIntake] goal from Figure 2
cannot be guaranteed to be satisfiable under all circumstances. This uncertainty
poses a problem; there does not appear to be a technological solution that can
guarantee to accurately measure Mary’s liquid intake, or one that will guarantee
that Mary will act on reminders that she should drink. On the other hand, a
temporary shortfall in the ideal liquid consumption may:

– Be normal - the temperature may be low, causing Mary to lose less liquid
through perspiration;

– Be recouped later - it may lead to a mild headache (which may in turn
prompt Mary to drink) rather than immediate organ failure;

11

Step 3 reveals that there is uncertainty about the environment (Mary’s be-
haviour), yet, rather than calling into question the viability of the AAL, the
uncertainty can be tolerated. Figure 4 shows the result of applying RELAX to
Maintain[AdequateLiquidIntake], which has been reformulated as the goal (indicated
by the block arrow 3(iii))

The System SHALL ensure AS CLOSE AS POSSIBLE TO a minimum of

liquid intake. The system SHALL ensure minimum liquid intake EVENTU-

ALLY.
The arc leading from the goal and pointing to the Inadequate liquid intake obstacle
indicates partial mitigation of the uncertainty over Mary’s liquid intake. The goal
is a composite comprising two clauses. The first mandates that although Mary’s
liquid intake cannot be measured with complete accuracy, the system should
be designed to exploit the capabilities of the resources identified in the domain
model to provide a best effort at liquid intake estimation. The second clause
mandates that although under-consumption of liquid may occur, whenever this
happens, the AAL must ensure that Mary’s liquid intake recovers to acceptable
levels at some point in the future. How to achieve eventual intake of the minimal
level of liquid, and how soon is left to the AAL system’s designers to determine.
Step 3(iv): Mitigate Uncertainty by adding a High-Level Goal. As
implied above, Mary’s liquid intake may fall below minimal levels so speci-
fication and RELAX-ation of goals aimed at getting Mary to drink cannot
guarantee that she will not become dehydrated at some point. Mary might
still forget to drink enough, or she could become dehydrated as a side-effect
of acquiring an infection. If we are to prevent Mary from becoming unhealthy
due to dehydration, we need to mitigate the uncertainty represented by the
Become dehydrated obstacle in Figure 4. Mitigation of this uncertainty requires
recourse to the most costly of our tactics, which is represented as Step 3(iv) of
our process. Step 3(iv) triggers the search for a new goal, higher in the goal
lattice than our RELAX-ed goal to maintain Mary’s liquid intake, concerned
with rehydrating Mary.

This mitigation approach is shown as the goal Achieve[ReHydration], indicated
by the block arrow 3(iv) in Figure 5. Rehydrating Mary represents a radical
change in the system behaviour. Instead of merely getting her to drink enough,
we now need to cope with the emergency situation of getting her rehydrated
before organ damage occurs. So urgent is this condition, that the new goal is OR-
ed with the other high-level goals. In other words, the AAL suspends its goal of
maintaining a healthy diet along with all the other goals that need to be satisfied
if Mary is to lead a normal life, and divert resources into getting her rehydrated.
This high-level goal represents a new target system, specified by refining the
Achieve[ReHydration] goal and, of course, applying uncertainty modeling to ensure
this new goal’s refined sub-lattice is robust too. The arc leading from the new goal
Achieve[ReHydration] to the obstacle Become dehydrated indicates the mitigation
of the associated uncertainty.
Discussion. In summary, this example illustrated three different mitigation
strategies for handling uncertainty in the environment. At the end of this pro-
cess for addressing the Maintain[IsHydrated] goal, we included functionality in

12

!"

Become

unhealthy

Maintain[Health

]

Maintain[Is

Hydrated]

Maintain[Eat

HealthyDiet]

Become

dehydrated

Achieve[Re

Hydration]

Achieve[Electrolyte

Administered]

Maintain[Patient

ResponseMonitired]

Achieve[Call

Ambulance]

Achieve[AdmitTo

Hospital]

Achieve[Call

Nurse]

 Nurse"

 AAL"

 AAL"

 Nurse"

Low

cost

Non-

invasiv

e

Maintain[Well

Nourished]

Maintain[Healthy

BloodSugar]

This new goal is OR-ed
with all the other high-

level goals

3(iv)

Fig. 5. Uncertainty mitigation with new high-level goal for new target system

the requirements for the original target system to support a reminder to drink
feature in the iCups to account for the uncertainty with Mary’s behavior. In
order to make the target system more flexible with respect to the uncertainty
associated with the water supply provided by the iFridge and take into account
the lack of accuracy in the sensors measuring the liquid intake, we RELAXed the
goal Maintain[AdequateLiquidIntake] to introduce flexibility in the quantity of liq-
uid consumed and the time frame in which it can be consumed. Finally, to handle
the uncertainty associated with severely adverse conditions with Mary (either her
unwillingness to respond to the reminders or illness) and/or adverse conditions
with the water supply, we introduced a new high-level goal Achieve[Rehydration]
to account for the situation where Mary has become dehydrated and the sys-
tem must provide new behavior to correct the situation. Dynamic adaptation is
required to realize the third mitigation tactic since it requires a different target
system to handle Mary’s dysfunctional state, with the objective of bringing her
and the system back to the point where the goal Maintain[IsHydrated] is satisfiable
again. The other two mitigation strategies may be implemented statically with
different branches of alternative behavior or realized by run-time adaptation,
depending on the available technology to support the run-time flexibility.

13

4 Related Work

The increasing demand for self-adaptation has led to a surge of interest in soft-
ware engineering for self-adaptive systems – see [10] for a recently compiled
summary. Most of this work has been in the design of software architectures
that enable flexible adaptations [11]. In general, such architectures share com-
mon characteristics that enable them to monitor and respond to environmental
changes. Much less work has been carried out on how to explicitly incorporate
the inherent uncertainty associated with adaptive systems into existing model-
ing languages. UML profiles exist that provide stereotypes for marking model
elements that are in some way uncertain – e.g., an uncertainty profile [12] for
capturing uncertainty in process modeling and fuzzy UML [13] for representing
imperfect information in databases. Uchitel et al. [14] have also dealt with un-
certainty using partial labelled transition systems (PLTS) to model aspects of
the system behaviour that are unknown and remain undefined.

Limited work has also been performed in modeling and monitoring require-
ments for adaptive systems. Goal-based modeling notations, such as i* [15] and
KAOS [1], have been applied to the specification of requirements of self-adaptive
systems. Specifically, goal-based models are well suited to exploring alternative
requirements and it is natural to use goal models to represent alternative behav-
iors that are possible when the environment changes [4, 16–18]. Furthermore,
goal models can effectively be used to specify the requirements for transition
between adaptive behaviours [4, 19]. With these approaches, however, the mod-
eler must explicitly enumerate all possible alternative behaviours. In contrast,
RELAX [5] supports a declarative approach for specifying requirements for a
DAS, thus accounting for more flexibility in the system behavior.

Run-time monitoring of requirements dynamically assesses the conformance
of run-time behaviour to the specified requirements [20]. This capability is a cru-
cial enabler for self-adaptive systems as non-conformance to requirements may
trigger an adaptation. Requirements monitoring approaches often rely on ad-hoc
run-time representations of the requirements [21]. A more promising approach
is to monitor goal models at run time as described in [22], where failed goals are
diagnosed and fixed at runtime using AI theories of diagnosis. More generally, in
the context of self-adaptive systems, it may only be possible to partially satisfy
runtime goals – that is, goal satisfaction is not a “yes” or “no” decision. Adapta-
tion decisions, therefore, may have to be made probabilistically. Letier and van
Lamsweerde [23] have proposed a technique to quantify degrees of satisfaction
in goal models but the work has not yet been applied to adaptive systems.

5 Conclusions and Future Work

Goals are objectives or statements of intent that the system should accomplish.
For the case of adaptive systems, different environmental uncertainty factors
may put at risk the accomplishment of such goals. In this paper, we have pre-
sented a goal-based modeling approach to specify the requirements of a DAS,

14

where environmental uncertainty associated with the goal specifications are ex-
plicitly integrated. The approach offers a systematic use of a range of tactics for
adaptation to deal with uncertainty on a rising scale of costs. The tactics include
adding low-level goals (the least costly approach), RELAXing requirements to
express bounded uncertainty to accomplish a partial but still suitable satisfac-
tion of the goals, and the identification of a new (high-level) goal to mitigate the
uncertainty that leads to the identification of a new target system.

The general objective of goal modeling is to refine goals so that the set of
subgoals that satisfy their parent goal is necessary and sufficient. One key lesson
from reasoning with uncertainty is that, where uncertainty exists, the most we
can hope for is that the subgoals are necessary. They will never be sufficient.
Uncertainty must be handled, therefore, by assigning responsibility to a human
agent or by introducing some intelligent or adaptive behavior into the software.

Several avenues for future research are possible. Estimation of the risk posed
by uncertainty is implicit in the application of our process; i.e., our work requires
risk to be inferred from the goal and uncertainty models. Further work is required
towards systematic techniques to quantify the risk as a complement to threat
modelling, understanding what we can RELAX (i.e. what is variant vs. what is
invariant), and the extent to which we can RELAX requirements. We speculate
that risk could be made explicit by quantifying it in the manner of attack trees
[2]. The systematic approach for identifying target systems makes it possible
to extend existing MDE-based approaches to DAS development (e.g., [3, 24]) to
start at a higher-level of abstraction. That is, with the results from this work, we
can start with a conceptual domain model of a DAS and systematically progress
from goals and requirements to their designs and implementation.

References

1. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML
Models to Software Specifications. John Wiley & Sons (2009)

2. Schneier, B.: Attack Trees - Modeling security threats. Dr. Dobb’s Journal (Dezem-
ber 1999)

3. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE ’06: Proceedings of the 28th international conference on Software
engineering, New York, NY, USA, ACM (2006) 371–380

4. Goldsby, H., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based
modeling of dynamically adaptive system requirements. In: 15th Annual IEEE
Int. Conf. on the Engineering of Computer Based Systems (ECBS). (2008)

5. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: Relax: Incorpo-
rating uncertainty into the specication of self-adaptive systems. In: Proceedings of
IEEE International Requirements Engineering Conference (RE09), Atlanta, Geor-
gia (2009) (to appear in).

6. Yijun, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.: From Goals
to High-Variability Software Design. Volume 4994. Springer Berlin / Heidelberg
(2008)

7. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1) (1999) 31–37

8. Mead, N.: Identifying Security Requirements using the SQUARE Method. In:
Integrating Security and Software Engineering: Advances and Future Visions. Idea
Group (2006) 44–69

15

9. den Braber, F., Dimitrakos, T., Gran, B.A., Lund, M.S., Stölen, K., Aagedal, J.O.:
The coras methodology: model-based risk assessment using uml and up. In: UML
and the unified process. IGI Publishing, Hershey, PA, USA (2003) 332–357

10. Cheng, B.H.C., et al: 08031 – software engineering for self-adaptive systems: A
research road map. In Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J., eds.: Software Engineering for Self-Adaptive Systems. Number 08031
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2008)

11. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In Briand,
L.C., Wolf, A.L., eds.: FOSE. (2007) 259–268

12. Jing, X., Pinel, P., Pi, L., Aranega, V., Baron, C.: Modeling uncertain and impre-
cise information in process modeling with uml. In Das, G., Sarda, N.L., Reddy,
P.K., eds.: COMAD, Computer Society of India / Allied Publishers (2008) 237–240

13. Ma, Z.M., Yan, L.: Fuzzy XML data modeling with the UML and relational data
models. Data Knowl. Eng. 63(3) (2007) 972–996

14. Uchitel, S., Kramer, J., Magee, J.: Behaviour model elaboration using partial la-
belled transition systems. In: ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, New York, NY, USA,
ACM (2003) 19–27

15. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: RE 97: Proc. of 3rd IEEE International Symposium on Require-
ments Engineering (RE97), Washington, DC, USA (1997)

16. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards requirements-driven
autonomic systems design. In: Workshop on the Design and Evolution of Auto-
nomic Application Software (DEAS 2005). (2005)

17. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: Proceedings of CASCON 2006. (2006)

18. Yijun, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.: From Goals
to High-Variability Software Design. Volume 4994. Springer Berlin / Heidelberg
(2008)

19. Morandini, M., Penserini, L., Perini, A.: Modelling self-adaptivity: A goal-oriented
approach. In: SASO ’08: Proc. of 2008 Second IEEE Int. Conf. on Self-Adaptive
and Self-Organizing Systems. (2008) 469–470

20. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
Second IEEE International Symposium on Requirements Engineering (RE’95).
(1995)

21. Dingwall-Smith, A., Finkelstein, A.: Checking complex compositions of web ser-
vices against policy constraints. In Augusto, J.C., Barjis, J., Ultes-Nitsche, U.,
eds.: MSVVEIS, INSTICC PRESS (2007) 94–103

22. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: An automated approach to
monitoring and diagnosing requirements. In Stirewalt, R.E.K., Egyed, A., Fischer,
B., eds.: ASE, ACM (2007) 293–302

23. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. In: Proc. of 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. (2004) 53–62

24. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.: An aspect-oriented and model-driven approach for managing dynamic variabil-
ity. In: MoDELS ’08: Proceedings of the 11th international conference on Model
Driven Engineering Languages and Systems, Berlin, Heidelberg, Springer-Verlag
(2008) 782–796

